

Let's harmonize labs competence ISO 19896

Index

1. Introduction
2. ISO/IEC 19896 Structure
3. ISO/IEC 19896 Part 1

- 4. ISO/IEC 19896 Part 3
- 5. ISO/IEC 19896 Part 3 Annexes
- **6**. Conclusions

- One important factor in assuring comparability of the results of evaluations is to understand that the evaluation process includes the specification of both objective and subjective assurance measures.
- Hence the competence of the individual evaluators is important when the comparability and repeatability of evaluation results are the foundation for mutual recognition

- □ ISO/IEC 17025 defines some competence requirements:
- 6.2.2 The laboratory shall document the competence requirements for each function influencing the results of laboratory activities, including requirements for education, qualification, training, technical knowledge, skills and experience.
- 6.2.3 The laboratory shall ensure that the personnel have the competence to perform laboratory activities for which they are responsible and to evaluate the significance of deviations.
- 6.2.5 The laboratory shall have procedure(s) and retain records for:
 a) determining the competence requirements;
- f) monitoring competence of personnel.

- □ ISO/IEC 23532 further refines these requirements:
- 6.2.5.1 The evaluation laboratory shall have procedure(s) and retain records for:
- a) determining the competence requirements for personnel in ISO/IEC
 19896-3;
- **f**) monitoring of competence of personnel.
- NOTE The laboratory shall review annually the competence of each evaluator for each test method the evaluator is authorized to conduct. The evaluator's immediate supervisor, or a designee appointed by the Labooratory Director, shall conduct annually an assessment and an observation of performance for each evaluator. A record of the annual review of each evaluator shall be dated and signed by the supervisor and the employee. A description of competency review programs shall be maintained in the management system.

- □ ISO/IEC 23532 further refines these requirements:
 - 6.2.6.1 Laboratory evaluator collectively shall have knowledge or experience for any specific technologies upon which an evaluation is conducted in ISO/IEC 19896-3:2018
 - 6.2.7 The evaluation laboratory shall maintain a competent administrative and technical personnel appropriate for ISO/IEC 15408based IT security evaluations. The laboratory shall maintain **position descriptions, training records, and resumes** for responsible supervisory personnel and laboratory evaluators who influence the outcome of security evaluations.

ISO/IEC 19896 Structure

□ ISO 19896 IT security techniques — Competence requirements for information security testers and evaluators —

Part 1 Introduction, concepts and general requirements

- Part 2 Knowledge, skills and effectiveness requirements for ISO/IEC 19790 testers
- Part 3 Knowledge, skills and effectiveness requirements for ISO/IEC 15408 evaluators

ISO/IEC 19896 Structure

- Part 1 Introduction, concepts and general requirements
 - Elements of competence
 - Competency levels
 - Measurement of elements of competence
 - Annex A: Example structures for describing competence requirements
 - Annex B: Example records of experience and competence

ISO/IEC 19896 Structure

- Part 3 Knowledge, skills and effectiveness requirements for ISO/IEC 15408 evaluators
 - Baseline for the minimum competence of ISO/IEC 15408 evaluators for each element of competence (knowledge, skills, experience,...)
 - Annex A (informative) Technology types: knowledge and skills
 - Annex B (informative) Examples of knowledge required for evaluating SARs
 - Annex C (informative) Examples of knowledge required for evaluating SFRs

The standard defines 5 elements of competence and 4 competency levels

- Elements of competence
 - Knowledge: facts, information, truths, principles of understanding acquired through experience or education
- Of the standard
- Of the testing or evaluation methods
- Policies and procedures of relevant approval authorities
- Of IT product architecture and design in relevant technology areas

- Elements of competence
 - Skills: ability to perform a task or activity with a specific intended outcome acquired through education, training, experience or other means
- Understanding the boundaries, documentation analysis, selection of appropriate testing methods, calibrating and using tools, build a test environment, performing testing, interpreting results, write reports, ...

Elements of competence

Experience: involvement at a practical level with projects related to the field of competence

Education: process of receiving or giving systematic instruction, especially at a school or university

- **Effectiveness:** ability to apply knowledge and skills in a productive manner
- Accuracy of test results, ability to repeat, ...

Competency levels

- Level 1 Associate: works under supervision
 Level 2 Professional: requires supervision in just a few areas
 Level 3 Manager: works unsupervised in most testing or evaluation areas, supervises level 1 and 2

Assigned for each competence area of 19896-3

- Level 4 Principal: fully competent for at least one technology area, able to communicate with stakeholders, works unsupervised in all areas, supervise other levels.
- Overall level of competency may determine designation of professional capability: Technician/Evaluator/Senior Evaluator/Lead Evaluator

- Measurements of elements of competence
 - Measuring is mandatory, how to do it is not mandatory

- Knowledge: 19896-3 provides a measurable body of knowledge.
 - We may decide who will measure: The CAB-CB? The ITSEF? Third parties?
 - Training records and professional certifications
- Skills:
 - Lab proficiency-testing programme (as required by 17025)
 - Feedback from other skilled personnel

Measurements of elements of competence

- **Experience**:
 - Records of projects completed

Education:

Certificates issued by organizations recognized as legitimate by the approval authority

Effectiveness:

Time needed, nonconformities, adaptability , accuracy, ...

Provides baseline for the minimum competence of ISO/IEC 15408 evaluators for each element of competence (knowledge, skills, experience,...)

- **Knowledge:** what an evaluator knows and can describe
- □ ISO/IEC 15408 and ISO/IEC 18045
 - Terms and definitions
 - Protection profiles and packages
 - SFRs and SARs
 - The evaluation process
 - Method and activities
- The assurance paradigm
 - The evaluation authority: policies, recognition agreements, supporting documents, ...
 - The evaluation scheme: interpretations, guidance policies, ...
 - The lab and it's management system: policies, process and procedures; methods; competence requirements.

- **Knowledge:** what an evaluator knows and can describe
- The technology being evaluated

Working as a trainee

- Common security architectures for each technology type. (See <u>Informative</u> Annex A Technology types: Knowledge and skills, based on classical CC categories).
- Protection Profiles, packages and supporting documents
- Since it is continually evolving, it is not possible to identify requirements for each technology, but can be obtained through experience. Experience can be developed oby:
 - Education

- Working as developer
- Performing research

Knowledge: what an evaluator knows and can describe

- Each lab may define their technology types and requirements.
- Information Security: security principles, attacks, attack potential, SDLC, testing, vulnerabilities, ...
- Knowledge required for SARs (See <u>Informative</u> Annex B Examples of knowledge for SARs)
- Knowledge required for specific SFRs (See Informative Annex C Examples of knowledge for SFRs)

3

ISO

19896

ISO 23532

Managem

Managemen

ISO/IEC 19896 Part 3

- Skills: what an evaluator is able to do
 - Basic evaluation skills
 - Evaluation methods: sampling, analysis, recording results, ...
 - Evaluation tools: report generation, specialized tools
 - Core evaluation skills given in ISO/IEC 15408-3 and ISO/IEC 18045
 - Evaluation principles: impartiality, objectivity, repeatability, reproducibility
 - Evaluation methods and activities (knowledge of the ISO 18045 verbs like check/confirm/demonstrate/....)
- Skills required when evaluation specific SARs
 - General: ability to write ORs
 - For each assurance component specific skills are required (mandatory)
 - E.g. VAN.3 Flaw hypothesis development

Skills: what an evaluator is able to do

- Skills required when evaluation specific SFRs (mandatory)
 - General: ability to understand and test for conformance and search for vulnerabilities
 - E.g. FCS being able to determine if crypto algorithms and protocols are implemented correctly
- Skills needed when evaluating specific technologies.
 - See <u>Informative</u> Annex A Technology types: Knowledge and skills, based on classical CC categories.
 - Like in Knowledge, skills can be obtained through experience.

Experience

- Experience is gained during the first and subsequent evaluations performed by an evaluator.
- Also during consultancy or product development

- At a minimum
 - Tertiary education with at least 3 years of IT studies
 - Experience which provided equivalent knowledge skills and effectiveness

Effectiveness

- Timely evaluations, e.g. time needed to develop or execute a test
 - Accurate evaluations, e.g. comments received during validation
- Reports contain rationales and references with direct and focused language quickly understandable by the intended reader of the report.

- **Effectiveness**
 - Evaluator shall be able to apply knowledge and skills in a productive manner: aptitude, initiative, enthusiasm, willingness, ...

Required evaluation principles: impartiality, objectivity, repeatability, reproducibility

Scheme guidance and procedures are followed

Annex A, technology types: knowledge and skills

Knowledge

- Knowledge required by evaluators working with specific technologies. List concepts that shall be known by evaluators for each classic CC technology category.
 - PPs related to technology type
 - Evaluation methods and activities related to the technology type
 - Technological standards related to the technology type
- The depth of knowledge depends on the assurance classes (e.g. Evaluators doing ALC may require less knowledge)

- Annex A, technology types: knowledge and skills
- Knowledge

- E.g. Databases
 - Concepts of data base management systems architecture
 - Access control methods

Annex A, technology types: knowledge and skills

Skills

- Mostly related to ATE
- Skills required by evaluators working with specific technologies
 - Performance of evaluation methods and activities associated with the technology type
 - Being able to understand related technological standards
- Lists the skills that shall be build upon evaluators for each classic CC technology category

Annex A, technology types: knowledge and skills

Skills

- E.g. Databases
 - Being able to correctly configure the database management system (DBMS) platforms
 - Being able to use structure query language (SQL) or other database query languages.

Annex B, examples of knowledge for SARs

- Minimum knowledge required for each SAR class. E.g.
 - ADV_ARC.1:
 - Self-protection property
 - Domain separation property
 - Non-bypassability property
 - Secure architecture and design concepts

ISO/IEC 19896 Part 3 – Annexes

Annex C, examples of knowledge for SFRs

- Minimum knowledge required for each SFR class. E.g.
 - FCO (Communication) Class
 - Proof origin
 - Non-repudiation of origin
 - Non-repudiation of receipt

How to implement in 6 easy steps?

- 1.- Define each job position for each evaluator level including the requirements in terms of competence
- 2.- Record the education and experience of each evaluator
 - Validate years of education or experience based on well-known person certifications?
- 3.- Track the knowledge you transmit to your team
- 4.- Assess the skills through questionnaires
- **5.** Evaluate the effectiveness through internal reviews and intercomparisons
- 6.- Put it all together!

Conclusions

- The ISO 19896 framework for competency is a good framework but every lab shall define their technology types and knowledge (/skills) requirements because some are kind of 'artificial', specially Annex A.
- A competence management system can be used just to pass audits, not being really useful. Lab managers already know their evaluators, but this may not scale.
 Garbage in – Garbage out.
- It is difficult to reflect some intangible skills like the "killer instinct" or the skill to report. There is always some subjectivity.

Contact

jtsec Beyond IT Security Granada & Madrid – Spain

hello@jtsec.es

www.jtsec.es

"Any fool can make something complicated. It takes a genius to make it simple." Woody Guthrie